| Course code | | | | | | | | | |--|---|---------|-----------|------------|---------|---------|-------|---| | Type and description | EC- Elective Course in Discipline: Civil engineering and transport | | | | | | | | | ECTS credit | 1 | | | | | | | | | Course name | Concrete Durability | | | | | | | | | Course name in Polish | Trwałość betonu | | | | | | | | | Language of instruction | English | | | | | | | | | Course level | 8 PRK | | | | | | | | | Course coordinator | dr hab. inż. Marcin Koniorczyk | | | | | | | | | Course instructors | dr hab. inż. Marcin Koniorczyk | | | | | | | | | Delivery methods and course duration | | Lecture | Tutorials | Laboratory | Project | Seminar | Other | Total of teaching hours during semester | | | Contact hours | 0 | 0 | 0 | 5 | 0 | 0 | 5 | | | E-learning | no | | Assessment criteria (weightage) | 0 | 0 | 0 | 100% | 0 | 0 | 100% | | Course objective Learning outcomes | to make the student familiar with the material durability related problems, to present the methods of concrete protections against the aggressive environment, After the course student: knows the basics of thermodynamics of processes in porous building materials (W1), knows how to recognize the basic degradation mechanisms in concrete (U1), knows how to determine the basic durability-related properties of concrete (U1), knows how to effectively protect concrete (W1). | | | | | | | | | Assessment methods | The assessment based on project (100%) | | | | | | | | | Prerequisites | | | | | | | | | | Course content with | Thermodynamics of heat and mass transport in concrete | | | | | | | | | delivery methods | Durability related properties of concrete, associated mechanisms, experimental tests Types of reinforced concrete corrosion (chloride, sulphate, freeze-thaw, etc) The methods of concrete protection against the aggressive environment | | | | | | | | | Basic reference materials | A. Neville, Properties of Concrete, 2012. J. Plank, E. Sakai, C.W. Miao, C. Yud, J.X. Hong, Chemical admixtures — Chemistry, applications and their impact on concrete microstructure and durability, Cement and Concrete Research 78 (2015) 81–99. S.W. Tang, Y. Yao, C. Andrade, Z.J. Li, Recent durability studies on concrete structure, Cement and Concrete Research 78 (2015) 143–154. | | | | | | | | | Other reference materials | · | | | | | | | | | Average student workload outside classroom | 15h | | | | | | | | | Comments | | | | | | | | | | Last update | July 2020 | | | | | | | |